Nature Neuroscience:光遗传学的十年

神经科学领域权威杂志Nature Neuroscience的最新一期9月刊上,以年度特刊的形式聚焦了光遗传学(Optogenetics)。这个由一种微生物分泌的蛋白质衍生而来的技术,从2005年的默默无闻,到2010年的年度方法,究竟经历了怎样的十年?

2005年:未被权威认可的开始  2005年,斯坦福大学的Edward S Boyden和Karl Deisseroth教授研究出一种新方法,使用慢病毒基因载体结合高速光开关将一种天然的海藻蛋白质ChR2(Channelrhodopsin-2)转染到神经元中,实现动作电位与突触传导的兴奋抑制性控制。就是这样一项开拓性的工作,最初却是接连被Nature和Science杂志拒稿,最终即便被Nature Neuroscience接收, 其工作的实用性也遭到了质疑。  一位审稿人表示:“最严重的问题是,即便这个方法看起来很新奇而且有一些前景,但在我眼中,并没有什么问题需要用它来解决。”文章的第一作者Edward 在今天也并未有太多抱怨,“虽然这种质疑反映出革命性的发现在最初想要获得认可必定是困难重重,但是公正地讲,关于应用的不确定性在当时确实是合理的。” 

2005-2009年:发展的五年  尽管光遗传学一出现就遭遇到了一些坎坷,但其新奇的想法深深地吸引了全世界的科研工作者开发这个工具。随后的两年,这种可以轻而易举地在神经元中表达的蛋白质帮助神经科学家在多个层次上取得突破,如构建并富集稳定耐受的表达载体,体外实时检测电生理水平、成像水平及行为水平的数据,设计并安装用于体内光传递和行为学控制的神经接口……  即便如此,直到2009年,随着光学与遗传学的紧密结合,这种对微生物产生的视蛋白的光遗传学操控才被广泛采用。与此同时,对神经环路的基因靶向也从最初的海马细胞系发展到了线虫、果蝇、斑马鱼、啮齿动物,最终形成了可特异性转染视蛋白的鼠系。数据显示,2005年开始,有关光遗传学的论文成指数增长。

 2009-2015年:成就的五年  截止目前,光遗传学的出现使科学家对神经环路的研究更加可控,特别是当随机检测一个神经元对于神经环路的意义时。同时,光遗传学已经逐渐成为无脊椎动物研究行为基础的神经回路的标尺。即使目前无法完全理解任何感觉、行为和认知的过程,但科研工作者们已经尝试应用光遗传学来绘制信息流形成的大脑图谱,例如结合fMRI(functional magnetic resonance imaging, 功能性磁共振成像)或者PET(postron emission tomography,正电子辐射断层成像)的前沿技术对限定神经细胞产生的活动模式进行全脑范围的成像。  除了对大脑不懈探索外,科学家还将光遗传学技术应用在其他领域不断的探索着人体的奥秘。如“改造”心肌细胞(Nature Methods, 2010);光线诱导表达特异光敏感蛋白的肌肉细胞发生正常的收缩,从而有望治疗瘫痪(Nature Medcine, 2010);构建高级别胶质瘤模型(Cell, 2015)等。伴随着方法学与技术不断的发展与完善,光遗传学被科学界广泛认可,2010年光遗传学被Nature Methods选为年度方法,同年被Science认为是近十年来的突破之一 。 

2015-2025年:展望新一个十年  Karl 教授认为,目前关于光遗传学技术可想到的最充分具体的就是--在哺乳动物大脑中分别控制所有细胞,即便这个想法由于基本物理条件的限制可行性不大(存在光的散射,靶向特化细胞时产生的能量沉积等问题)。  另一个更开放的问题就是这项技术如何应用到临床研究。因为我们现在仅仅掌握人类大脑里粗略的细胞类型和功能,要精确定位可作为临床研究靶点的神经细胞还需要更坚实的基础科学依据。可以肯定的是,通过光遗传学在基础神经科学中的应用,未来将会发现更多的供药物开发的分子靶点,更多的供计算机模拟人脑的环路位点,更多的供再生医学如修复人脑使用的方法策略。正如Edward S Boyden所言, “10年对于科学来说并不算长,我们才刚刚开始。” 

 

附:光学遗传学(Optogenetics)是指结合光学和遗传学手段兴奋或抑制活体组织上指定类型细胞活动的方法。该技术通过利用遗传学手段选择性在某些类型细胞上表达光敏感通道,通过活体组织内光传送技术,进而改变这些细胞的活动及功能,成为精确定位与剖析不同类型神经元在神经环路及神经系统疾病、精神疾病中的作用提供了有力的工具。 

更多参见:  1.Optogenetics: 10 years of microbial opsins in neuroscience

                    2.Optogenetics and the future of neuroscience 

                    3.ChR2 coming of age